MATH 504 HOMEWORK 4

Due Monday, October 22.

Problem 1. Suppose that κ is an inaccessible cardinal in L. Show that $L_{\kappa} = V_{\kappa}^{L} = V_{\kappa} \cap L$ and $L_{\kappa} \models ZFC + V = L$.

Problem 2. There exists $A \subset \omega_1$, such that $\omega_1 = \omega_1^{L[A]}$. (Hint: for each $\alpha < \omega_1$, find $A_\alpha \subset \omega$, such that $L[A_\alpha] \models \alpha$ is countable. Then look at $\alpha \mapsto A_\alpha$ and code it as a subset of ω_1 .)

Problem 3. Show that \Diamond implies the following:

- (1) There is a sequence $\langle A_{\alpha} \mid \alpha < \omega_1 \rangle$, such that each $A_{\alpha} \subset \alpha \times \alpha$ and for all $A \subset \omega_1 \times \omega_1$, the set $\{\alpha < \omega_1 \mid A \cap (\alpha \times \alpha) = A_{\alpha}\}$ is stationary.
- (2) There is a sequence of functions $\langle g_{\alpha} \mid \alpha < \omega_1 \rangle$, such that each g_{α} : $\alpha \rightarrow \alpha$ and for all $g : \omega_1 \rightarrow \omega_1$, the set $\{\alpha < \omega_1 \mid g \upharpoonright \alpha = g_{\alpha}\}$ is stationary.

For a regular cardinal κ , define \Diamond_{κ} to be the stement that there is a sequence $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ with each $A_{\alpha} \subset \alpha$, such that for all $A \subset \kappa$, the set $\{\alpha < \kappa \mid A \cap \alpha = A_{\alpha}\}$ is stationary in κ . In particular, \Diamond_{ω_1} is just \Diamond .

Problem 4. Let κ be a regular cardinal. Show that \Diamond_{κ} implies that $2^{<\kappa} = \kappa$.

Recall that Jensen's Covering lemma states that if 0^{\sharp} does not exists, then for every uncountable set $X \subset ON$, there is a set of ordinals $Y \in L$, such that $X \subset Y$ and |X| = |Y|.

Problem 5. Suppose that 0^{\sharp} does not exists. Show that for every singular cardinal κ , $\kappa^+ = (\kappa^+)^L$ i.e. L computes successors of singulars correctly.